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a b s t r a c t

Parts of the asymptotic stability boundaries of the uniform motion of the centre of mass of a system of bod-
ies consisting of an asymmetrical satellite with a three-axis gyroscope in a circular orbit are investigated
by the second Lyapunov method. Terms of the Lyapunov function that are higher than the second order
are enlisted for the investigation. The sign-definiteness criterion of inhomogeneous forms is employed
for the corresponding function. Parts of the stability boundaries in which the steady motion investigated
is asymptotically stable are established using the Lyapunov asymptotic stability theorem. Application
of the Barbashin and Krasovskii theorems reveals parts of the stability boundaries in which the steady
motion is unstable. It is established that the asymptotic stability of the steady motion investigated is
solved by expanding the Lyapunov function to sixth-order terms.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The necessary conditions for the asymptotic stability of the uniform motion of the centre of mass of a system of bodies consisting of an
asymmetrical satellite and a three-axis gyroscope in a circular orbit with a constant angular velocity �0 have been obtained.1 The orbital
system of coordinates OX1X2X3, in which the OX1 axis is directed along a tangent to the orbit, the OX3 axis is directed along a radius vector
from the centre of the Earth, and the OX2 axis completes a right system of coordinates, is introduced to describe the satellite motion. The
system of coordinates attached to the satellite Ox1x2x3 is directed along the principal axes of inertia of the satellite with corresponding
moments of inertia A, B and C. We will use �i (i = 1, 2, 3) to denote the projections of the absolute angular velocity of the system of bodies
onto the Oxi axes, and we will use Hi (i = 1, 2, 3) to denote the projections of the angular momentum onto the Oxi axes. The orientation of
the Ox1x2x3 system of coordinates relative to OX1X2X3 is specified by the angles �, � and �,1 so that the projections of the unit vectors OX2
and OX3 onto the Ox1, Ox2 and Ox3 axes are as follows:

The equations of motion of the satellite system of bodies have the form1

(1.1)

where �i (i = 1, 2, 3) denotes certain positive constants. The moments of inertia of the gyroscope in the Ox1x2x3 system have the values Ji
(i = 1, 2, 3). The angular momenta of the gyroscope are treated as controls. The system of equations (1.1) admits of steady motion of the
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form1

(1.2)

The stability of motion (1.2) was investigated using the function1

By virtue of equations of motion (1.1), it has the derivative of constant sign

For the equations of perturbed motion we introduce the deviations

Then, the following function can serve as the Lyapunov function for investigating the stability of the zero solution of the equations of
perturbed motion

An investigation of the stability of motion (1.2) based on conditions for the sign-definiteness of the quadratic part of the function V̄(x) has
been performed.1 The asymptotic stability region is specified by the inequalities

(1.3)

It was established1 that there are no complete trajectories of the set V̇ = 0 for equations of motion (1.1) when B /= A. In such a case,
according to the Barbashin–Krasovskii theorem,2,3 motion (1.2) is asymptotically stable. Instability of motion (1.2) was demonstrated in
Ref. 1 using the Barbashin and Krasovskii theorems when the quadratic part of V̄(x) is sign-variable.

In order to investigate the boundaries of the necessary conditions for asymptotic stability, each of the parts of stability boundaries (1.3)
will be studied below. The direct Lyapunov method with the Lyapunov function V̄(x) will be used.3,4

2. Investigation of the stability boundaries

In the general case, on the stability boundaries, it is necessary to analyse the sign-definiteness of an inhomogeneous function of the
form

(2.1)

Here W2m(x1, . . ., xn) is a form of the lowest order 2m that is positive-definite for its variables, and W*(x) is a polynomial consisting of
terms of degrees higher than 2m. The real solutions W(x) = 0 in the vicinity of the origin of coordinates can be sought in the form of the
parametric branches5,6

(2.2)

where pj denotes non-negative integer exponents, the value �j = −1 is taken only for even M when xn+j < 0, while �j = +1 is taken in the
remaining cases, and positive integer values of L and M are selected when constructing the solutions W(x) = 0. Substituting expressions
(2.2) into function (2.1) we obtain the series

where AQ(bi(p); M; L; t) is a form of the lowest order Q in the parameter t. For a certain L, suppose the fraction Q/M is reduced to the
irreducible fraction q/m. Then the sign-definiteness of the function W(x) is resolved by the following theorem.

Theorem 1. If a) q = 2� + 1 (� is an integer) or b) q = 2� and AQ(bi(p); M; L; t) is a sign-definite form for certain real bi(p), the function W(x) is
sign-definite.

If q = 2� and AQ(bi(p); M; L; t) is a positive-definite form for all bi(p) ∈ R, the function W(x) is positive-definite.
If q = 2� and AQ(bi(p); M; L; t) is a form of constant sign for all bi(p) ∈ R, the function W(x) can be sign-definite or sign-variable for terms

of order higher than Q.
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Theorem 2. When the sign-definiteness of form (2.1) with m = 1 is analysed, in expansion (2.2) we can assume at once that

The investigation of the sign-definiteness of such forms has previously been described in greater detail.7,8

As the Lyapunov function for the equations of perturbed motion we take the function V̄(x), whose sign-definiteness should be determined
by terms up to a finite order.8 Therefore, we expand the trigonometric functions in the expressions for aij (i = 2, 3; j = 1, 2, 3) into Maclaurin
series and take into account terms up to the sixth order. To simplify the analysis of the polynomials, we first disregard the variables

Then the variables y8 and y9 appear in the expression for V̄(x(y)) only in the form of the second-degree terms (By2
9 + y2

8/J2), and they
can be excluded from the investigation of the sign-definiteness of V̄(x). After subsequently redefining yj = xj (j = 1, 3, 4, . . ., 7), we expand
the function V̄(x) to sixth-order terms:

The quadratic part of the function V1(y) can be represented in the form of the sum

where

The analysis of the equation

(2.3)
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will be considerably simpler after converting the matrices S1 and S2 into diagonal matrices. For this purpose, we write the characteristic
equations

Here and in what follows mi and ki (i = 1, 2, 3) denote the eigenvalues of the matrices S1 and S2.
In the region specified by the first inequality in (1.3), all the eigenvalues mi (i = 1, 2, 3) of the matrix S1 are positive by virtue of the

positive-definiteness of the quadratic form (y1, y6, y7)S1(y1, y6, y7)’. On the boundary of this region, at least one of the mi vanishes. In the
region specified by the second inequality in (1.3), all the eigenvalues of the equation f2(k) = 0 are also positive, and on the boundary of this
region, one of the ki vanishes.

The matrices of the corresponding linear transformations

perform the required transformation of the variables singled out

when the notation introduced is defined as follows:

Then the quadratic form

is reduced to the sum of squares

where

We will next investigate the sign-definiteness of the function V̄1(y(z)) = V2(z) in special cases of the asymptotic stability boundary of
motion (1.2), in which one or several of the inequalities in (1.3) become equalities.

3. Parts of the asymptotic stability boundaries

We will first examine the case of the stability boundary

(3.1)

In this case m1 = 0 = M1, and the values m2 > 0 and m3 > 0 satisfy the equation

(3.2)

When the quantity (3.1) is substituted into V2(z), we obtain the function V3(z). Since for the remaining eigenvalues we have ki > 0 (i = 1, 2,
3), then, according to Theorem 2, the parametric substitution here is the following

(3.3)
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As a result of substitution (3.3), for V3(z) we obtain a series in the parameter t that begins with fourth-order terms, so that

where

According to the second assertion of Theorem 1, the condition D1 > 0 is necessary and sufficient for the sign-definiteness of V3(z).
We will examine the case D1 = 0 separately. The only solution of Eq. (2.3) is then

(3.4)

The parametric substitution (3.3) will next be continued by taking into account equalities (3.4). As a result, using the expression
J2 = 4A − 11B/3 + J1, for V3(z) we obtain a series that begins with sixth-order terms. Now we have

where

The latter expression is simplified when the roots of Eq. (3.2) are substituted into it: D2 = B�2
0/180 > 0. As a result, asymptotic stability

condition (1.3) can be supplemented by the following

(3.5)

The problem of asymptotic stability is resolved in this case by analysing the terms up to the sixth order in the expansion of the function
V3(z).

We will now examine the part of the asymptotic stability boundary

(3.6)

Here k1 = 0, and, therefore, K1 = 0. All the eigenvalues mi > 0 (i = 1, 2, 3); therefore, in accordance with Theorem 2, the parametric substitution
will have the form

(3.7)

As a result of substituting expressions (3.6) and (3.7) into the function V2(z), we obtain the series V4(z) in the parameter t, which begins
with fourth-order terms, so that

where

According to the second assertion of Theorem 1, satisfaction of the condition D3 > 0 is necessary and sufficient for sign-definiteness of the
function V4(z).

An analysis of the case when D3 = 0 also leads to the value
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where

Therefore, according to Theorem 1, in this case, too, the function V4 is positive-definite. Thus, the conditions for asymptotic stability of
steady solution (1.2) on part (3.6) of the boundary are expressed as follows:

(3.8)

Here also the question of asymptotic stability is resolved by terms no higher than the sixth order in the expansion of the function V4.
We will analyse how the stability boundaries are reached when

In this case m1 = 0 = k1, and accordingly M1 = 0 = K1. According to Theorem 2, the parametric substitution will be

(3.9)

When expressions (3.9) are substituted into the expression for V3(z), we obtain a series in t1 and t3 that begins with fourth-order terms,
so that

where

Determination of the region of positive values of A4(bi(l1,l3); 1; 2; t) involves directly finding the smallest value of this quantity. For the
function A4, which depends on 15 variables bi(l1,l3) (i = 2, 4, 5, 6, 7; l1, l3 = 0, 1, 2), this smallest value is

It is calculated by making the substitution J1 = J3 + C + 3B − 4A and is specified when

(3.10)

The biquadratic form for the function D4 of two variables has the form

where

and will be positive-definite when one of the following set of conditions is satisfied
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They can be expressed in terms of the moments of inertia of the system of bodies in the form

(3.11)

(3.12)

It is especially urgent to investigate the case of the form of constant sign F(t), in which the first inequality sign in the second condition
in (3.12) is replaced by an equality sign. Then parametric substitution (3.9) will be continued:

(3.13)

As a result of substituting expressions (3.13) into the function V3(z), we obtain a series for which the expansion begins with fifth-order
terms:

In the general case of arbitrary real b5(l1,l3), the latter expression does not vanish identically. According to Theorem 1, the form V3(z) is
sign-variable. Then, according to the Barbashin and Krasovskii theorems,2,3 motion (1.2) is unstable.

Therefore, under condition (3.10) and either conditions (3.11) or conditions (3.12), steady motion (1.2) is asymptotically stable. Here
the question of asymptotic stability is resolved by analysing the terms up to the sixth order in the expansion of the function V3(z).

We will investigate the part of the asymptotic stability boundary for C = A. In this case the matrices S1 and S2 of the quadratic forms are
non-degenerate, and, therefore, by Theorem 2, the parametric substitution for C = A will be the following

(3.14)

As a result of substituting expressions (3.14) into the function V2(z), we obtain a series, whose expansion in the parameter t begins with
the smallest (fifth) order:

When A /= B (the case of a spherical satellite is not considered here), the conclusion that the form V2(z) is sign-definite hence follows
according to the first assertion of Theorem 1, regardless of the signs of the expressions in parentheses. Thus, in this case, according to
the Barbashin and Krasovskii theorems,2,3 motion (1.2) is unstable. Violation of the condition C > A in any part of the asymptotic stability
boundary results at once in unstable motions of the form (1.2).

When A /= B, in the case in which only the left-hand side of the first strict inequality in (1.3) vanishes and conditions (3.5) are satisfied,
motion (1.2) is asymptotically stable.

When A /= B, in the case in which only the left-hand side of the second strict inequality in (1.3) vanishes and conditions (3.8) are
satisfied, motion (1.2) is asymptotically stable.

When A /= B, in the case in which the left-hand sides of the first and second strict inequalities in (1.3) vanish and either conditions
(3.11) or conditions (3.12) are satisfied, steady motion (1.2) is also asymptotically stable.

Obviously, when A = B, according to the Barbashin and Krasovskii theorems,2,3 motion (1.2) will not be asymptotically stable in any part
of the boundary. At best, according to the corresponding Lyapunov theorem,2,3 only stability of motion (1.2) can be obtained.
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